منابع مشابه
Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding
The sedimentation of a rigid particle near a wall in a viscous fluid has been studied numerically by many authors, but analytical solutions have been derived only for special cases such as the motion of spherical particles. In this paper the method of images is used to derive simple ordinary differential equations describing the sedimentation of arbitrarily oriented prolate and oblate spheroids...
متن کاملFaraday’s Instability for Viscous Fluids
We derive an exact equation which is nonlocal in time for the linear evolution of the surface of a viscous fluid, and show that this equation becomes local and of second order in an interesting limit. We use our local equation to study Faraday’s instability in a strongly dissipative regime and find a new scenario which is the analog of the Rayleigh-Taylor instability. Analytic and numerical cal...
متن کاملTransport in Viscous Rotating Fluids
We consider a uniformly rotating viscous incompressible fluid and estimate particle transport in the vertical direction (parallel to the rotation axis). We prove that for short time and regular initial data, strong rotation suppresses the vertical gradient of flow maps. The proof uses a diffusive Lagrangian formalism, and the suppression of the vertical gradient is a natural and direct byproduc...
متن کاملPotential Flow of Viscous Fluids: Historical Notes
A purely irrotational theory of the effect of viscosity on the decay of free gravity waves is derived and shown to be in excellent agreement with Lamb’s (1932) exact solution. The agreement is achieved for all waves numbers k excluding a small interval around a critical k=kc where progressive waves change to monotonic decay. Very detailed comparisons are made between the purely irrotational and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2003
ISSN: 0022-0396
DOI: 10.1016/s0022-0396(02)00115-8